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Abstract—The influence of the shape and size distribution of defects on material strength is
investigated. Constant reference is made to Weibull Theory and Fracture Mechanics, and a family
of regular polygonal voids is considered with the two limit-cases of Griffith cracks and circular
pores. A defect size distribution of proportionality is defined. for which the maximum defect size
turns out to be proportional to the linear size of the body. In this way. a very general analytical
expression for the rensile strength decrease with size is obtained and then confirmed by experimental
evidence.

Specimen size is also shown to have a fundamental influence on global structural behaviour,
which can range from ductile to brittle when strain softening and strain localization are taken into
account. The brittle behaviour coincides with & snap-back instability in the load-deflection path,
which shows a positive slope in the softening branch. Such a virtual branch may be revealed only
if the loading process is controlled by a monotonically increasing function of time (e.g. the crack
opening displacement). Otherwise, the loading capacity will present a discontinuity with a negative
jump,

A general explanation of the well-known decrease in hending strength by increasing the specimen
sizes is given in terms of dimensional analysis. Duc to the different physical dimensions of strength
[FL~*] und toughness [FL '], the true value of such material property may be found exactly only
with comparatively large specimens.

1. INTRODUCTION

It is a matter of fact that the strength of structural materials is not constant —it decreases
with increasing size of the specimen. Such a phenomenon was analyzed by Weibull (1939)
nearly fifty years ago through the application of the “weakest link concept™. It consists in
the hypothesis that the probability of finding a critical imperfection in a given material
increases with increasing volume. This is a simple assumption which does not describe either
the nature of the imperfections or the constitutive law of the material. More recently,
Freudenthal (1968) and Jayatiluka (1979) considered a linear-clastic material with a great
number of embedded Griffith cracks. They proved that the variability of tensile strength with
specimen volume may be connected with the probability density of crack size distribution.

Several materials used in civil engineering, for example concrete, rocks and fiber-
reinforced cement composites, present softening in their ultimate behaviour under loading
(Bazant, 1976). The size-scale of the specimen has often revealed a fundamental influence
on the global structural behaviour. Whercas in elasticity and plasticity, geometrically similar
structures behave in the same way, when strain-softening and strain-localization are taken
into account, the structural behaviour ranges from ductile to brittle merely by increasing the
size, and keeping material properties and geometrical shape unchanged. In classical
plasticity, only energy dissipation per unit volume is allowed, whereas, if energy dissipation
per unit arca is also contemplated, the global brittleness becomes scale-dependent.

The influence of the shape and size distributions of the defects on the tensile strength
is investigated in Scctions 2 and 3 respectively. A family of regular polygonal voids is
considcred with the two limit-cases of Griffith cracks and circular pores. A general expla-
nation is thus obtained for the tensile strength decrease with size (from the true vaiue down
to zero) and then confirmed by experimental evidence.

Limit analyses for slabs in tension and beams in flexure are proposed in Sections 4 and
5 respectively, assuming cohesive forces between the two opposite crack surfaces. Such a
simple approach shows a clear trend towards brittle behaviour for large size. When the
softening load—deflection branch presents positive slope, a snap-back instability occurs
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(Maier, 1968). If the loading process is displacement-controlled. the loading capacity will
present a discontinuity with a negative jump. Such results are confirmed by a more refined
finite element investigation in Section 6. The bending strength appears to decrease with size
from three times the true value down to the true value for infinite size. A cohesive crack
model is utilized to analyze slow crack growth in bending. Such a model was introduced
by Barenblatt (1959), and then applied with some modifications by several authors : Dugdale
(1960), Bilby er al. (1963). Rice (1968), Hillerborg et al. (1976) and others.

Tensile strength and bending strength both turn out to be decreasing functions of size.
On the other hand. such functions appear different and produced by substantially different
causes.

2. STRUCTURES WITH A DOMINANT DEFECT

Let us consider a two-dimensional linear-elastic structure with an edge Griffith crack
(Fig. 1(a)). Referring to the well-known paper by Irwin (1957), the symmetrical stress field
around the crack tip can be described by the following expression :
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Fig. 1. Geometrically similar structures with a dominant defect : (a) opening crack : (b) mixed mode
crack ; (¢) re-entrant corner ; (d) polygonal void.
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6, =Kr 'S, (9. ()

where K is the amplification factor of the stress-singularity (stress-intensity factor) and r

and 3 are the radial and angular coordinates respectively.
For every geometrical shape of the structure. it is possible to express the K-factor by

K=0cb"*f(a/b). 03]

where ¢ is the nominal stress, & is a characteristic size of the structure and f is a shape-
factor depending on the geometry of structure and on the ratio of crack length a to reference

size b (Sih, 1973).
The stress of failure o is reached when the K-factor is equal to its critical value K. :

{
_ g pel2
o,=Kb Fah 3)

tf the logarithms of both sides of eqn (3) are considered, we obtain:

Ing,={In K. ~In fa/b)] = !1n b, @)

or, more congisely,

fno,=tna
'
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Fig. 2. Bi-logarithmic strength vs size graph: (a) interaction between ultimate strength collapse and
crack propagation; (b) attenuation of the strength decrease when the re-entrant corner angle
increases.
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In asz(Kl..g>—§ln b. (5)
where function A depends on the shape of structure, as well as on material and crack depth.
[f we keep the material and the structural shape constant and take into consideration
a set of geometrically similar structures (Fig. 1(a)). the strength In o, will turn out to be a
linearly decreasing function. with slope — 1/2. of the scale-parameter In & (Fig. 2(a)).
If the material presents an intrinsic strength o, the horizontal line

Ing,=Inga, 6)

will limit the strength for & — 0~ in Fig. 2(a). In fact. as already observed by Walsh (1972)
and Carpinteri (1982a. b). when the structural size is relatively small, the ultimate strength
failure precedes the crack propagation.

When the Gritfith crack is subjected to a mixed mode loading (Fig. 1(b)). the stress
field at the crack tip is

0, = Z. K,r Y809, @)

where K, (v = |,2) are the stress-intensity factors related to mode | (opening) and mode
2 (sliding) respectively. Analogously to eqn (2), they can be expressed as

K, =ab"f,(alb); v=12. %)
The interaction of the two fundamental fracture modes produces crack propagation when
a function of K, (v = 1, 2) is equal to its critical value (Carpinteri, Di Tommaso and Viola,
1979):

F(K, ;v =1,2) = conslant. )

Most relevant fracture criteria can be approximated by an elliptic function £ (Di Leonardo,
1979) :

= K2, (10)

=
+
-y

where ¢ > 0 is a measure of the influence of mode 2 on crack propagation. Substituting
eqn (8) into eqn (10), it follows that

b fi+qfil = K., (1)

and, therefore, the failure stress may be expressed by eqn (3) again, with function f replaced
by the square root:

f=JVfi+aft (12)

Thus, even in the case of a mixed mode Griffith crack, the scale effect is represented by a
straight line with slope — 1/2 in the planc In g,~In b (Fig. 2(a)). This means that it is the
power of the stress-singularity—and not the gcometry of crack, structure and load—which
dcfines the rate of strength decrease by increasing the size-scale.

Let us consider now a two-dimensional linear-elastic structure with a re-entrant corner
of amplitude y (Fig. 1(c)). Williams (1952) proved that when both the notch surfaces are
free, the symmetrical stress field at the notch tip is
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Fig. 3. Stress-singularity power vs re-entrant corner angle.

o, =K*r S (9. (13)

where the power « of the stress-singularity ranges between 1/2 (when y = 0) and 0 (when
y = x), as shown in Fig. 3. If Buckingham’s Theorem for physical similarity and scale
modelling is applied, and stress and lincar size arc assumed as fundamental quantities
(Carpinteri, 1982a). it will be possible to writc an equation analogous to eqn (2):

K* =ab*g(a/h). (14)

When angle y vanishes, eqn (14) coincides with eqn (2), whereas when y = n, the stress-
singularity disappears and the stress-intensity factor K* assumes the physical dimensions
of a stress and becomes proportional to the nominal stress o, As experimentally demon-
strated by Leicester (1973), the failure stress o is achieved when the K*-factor is equal to
its critical value K*:

a,=l\’,.'h"“g—(t:—/5;, (15)
or, in logarithmic form,
Ing,= B(K* a/b)—a In b, (16)
where
B(K?*,a/b) = In K*—In g (u/b). an

If we keep material and structural shape constant and take into consideration a set of
similar structures (Fig. 1(c)). the strength In g, turns out to be a linearly decreasing function
with slope —a of the scale-parameter In b (Fig. 2(b)). When y — &, i.e. when a = 0, any
scale effect vanishes and the straight line becomes horizontal. In this case the equilibrium
condition is:

ob = K*(b—a), (18)

and then, from eqn (14),
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1
glab) = ———. (19)

¢
b

When the notch depth «¢'p tends to zero. the shape-function g(a/b) = | and the stress-
intensity factor K* coincides with the nominal stress ¢ exactly —see eqn (14). The distinction
between ultimate strength collapse and fracture at the corner vanishes and condition (16)
coincides with condition (6).

The case of a re-entrant corner subjected to mixed mode loading can be handled in
the same way as the Griffith crack. Even in this case. the conclusion is that only the power
of the stress-singularity. and not the loading condition, determines the rate of decrease in
strength with size.

Let us now consider a two-dimensional linear-elastic structure with a polygonal void
of regular shape and arbitrary number of sides M (Fig. 1(d)). As is well known, the angle
v is a function of the number of sides M :

(20)

Every re-entrant corner of the polygonal void is generally subjected to a mixed mode loading
condition with a stress-singularity r “*. For a given external load. there is a corner tip which
is subjected to the most severe stress field. If the load is increased proportionally, the
fracture condition will first be achicved at this tip. On the basis of what has been said
previously about mixed mode cricks and notehes, the strength varies according to eqn (16)
cven in this case, and the intereept is

13(1\':,2) =In K*~In /gi +493. @

with obvious meanings of the symbols. A graph of In g, versus In b is therefore lincar with
slope —a, even in the case of polygonal void. For M = 2 we have a Griflith crack, eqn (20)
giving y = 0, whereas for M — oo the polygonal void becomes a circular hole, eqn (20)
giving y = 7. In the latter case, any size effect vanishes and the In 6,~1In b graph appears
horizontal. On the other hand, it is well known that the stress-concentration factor is
independent of the size of the circular hole and that its value is 3.

3. INFLUENCE OF DEFECTS AND POROSITY ON MICROCRACKING INITIATION AND
TENSILE STRENGTH

In the present section, two-dimensional structures with a multitude of cracks or voids
of a given size-distribution are considered. Three hypotheses are assumed :

(1) the structure is macroscopically homogencous;
(2) the structure is macroscopically isotropic;
(3) the interaction among the imperfections is negligible.

As a first case, let us consider a set of similar structures, where a multitude of cracks
and/or polygonal voids of constant size a arc embedded (Fig. 4(a)). They can be considered
as specimens of the same material, and their failure occurs when the fracture condition at
the imperfection of the most critical orientation is realized. Since such imperfections are all
the same size, we can assert that any size effect is absent in this ideal case.

Let us consider now a set of similar structures, where the imperfections have a constant
size which is proportional to the size of the structure (Fig. 4(b)). In this case, they cannot
be considered as specimens of the same material. The failure occurs at the imperfection of
the most critical oricntation. which is of a size proportional to the size of the structure.
Since the influence of the other imperfections is assumed negligible, this case is completely
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Fig. 4. Geometrically similar structures with many random defects: (@) constant defect size;
(b) defect size constant and proportional to the structural size; (¢) defect size distribution of
proportionality.

equivalent to that of a unique imperfection of size proportional to that of the structure.
Thus, the strength size effect is represented by a linear In 6,-In b diagram with slope —g,
where a is the power of the stress-singularity produced by the imperfections. If we have
imperfections of the sume size, but with different shape (e.g. cracks and circular pores), the
fracture condition has to be evaluated only for the imperfections with the maximum value
ofx (0 € x < 1/2).

Let us consider finally a set of similar structures where the imperfections with the most
dangerous shape (x = a,,,,) have a probubility density p(a) of size distribution (Figs. 4(c)
and 5(a)). We can assert that if the size distribution p(a) is such that the maximum size a,,,
is proportional to the linear scale b, then the strength size effect will be represented by a
lincar In o ,-In b diagram with slope —ag,,. The above hypothesis is very restrictive and is
valid only when the probability density of size distribution p(«) presents particular proper-
tics. If p is the density of imperfections (number of imperfections per unit area), the
maximum size d,,,, cin be defined as follows :

1
2 =
pb p(a.,) 55 AaAw =1, (22)

where the factor (1/2r) is due to the fact that all the imperfection orientation angles w are
equally likely. If a geometrically similar structure of characteristic size kb is considered and
the above hypothesis is assumed (Fig. 4(c)). we can write
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Fig. 5. Defect size distribution of proportionality: (a) probability density; (b) cumulative dis-
tribution.

l
p(kb)?p(ktmax) 57 AaAw = 1. (23)

Since a,,, is a function of p and b, besides the ranges Aa and Aw, it follows that eqns (22)
and (23) must be valid for any defect size a:

1
pb’p(a) o AaAw =1, (24)

i
pkb*p(ka) 57 Aaldw =1, (25

From eqns (24) and (25) it follows that
p(a) = K’p(ka), Ya»a, VkeR*, (26)

and then function p assumes the form

Ya»ad, 27

_<
pla) = a2’

where C is a constant with the physical dimension of a length and 4 is the average defect
size. Equation (27) will be referred to as the defect size distribution of proportionality. The
related cumulative distribution function P is

P(a) = jd p(x) dx = jau p(x) dx+ja é_ dx, (28)

where a, > d is the value beyond which the decreasing branch of function p can be approxi-
mated by eqn (27). Carrying out the integrations in eqn (28), we obtain
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P(a)=Po+[—£]¢ =Po+£—£ (29)

X lag ay a

Since for a — oo the cumulative distribution P(a) — 1,

Py+ a£0 =1L (30
and then (Fig. 5(b)):
P(a) = 1l —(Cla). for a> a,. 30
with
C = (1 - Py)a,. 32)

Generally speaking, the cumulative distribution function P will have the following form:
C
Pla)=1- R for a > ay. 33

with
C=(l=Pya). (34)

In this casc, the strength size effect can be represented by a linear In o ~In b diagram with
slope ~oay:

a(y)

aN(?-N) = 'N_c-

(39

where the exponent { depends on the secondary features of the material (e.g. density of
imperfections, size distributions of the less dangerous defects, etc.). The probability density
of size distribution in the general case—see eqn (33)—is:

C_

dr -
p(a)=a—‘-l-=N;,',H. for a > u,, (36)

which becomes eqn (27) when N = 1.

Equation (35) shows that the size effect vanishes when y = nt (circular pores) and/or
when N — oo (necarly constant defect size). On the other hand, the size effect becomes
cnormous when N — 0 (very large dispersion in the imperfection size distribution). The
treatment of 2-D structures can formally be extended to 3-D structures with polyhedral
voids (Carpinteri, 1983).

If the preceding assumptions are valid, the experimental In g,~In b strength diagram
must appear linear with a negative slope ay, according to eqn (35). When the dispersion in
the imperfection size distribution is not very high (¥ = 1), we have the theoretical upper
bound ay < 0.50, which is rarely exceeded in the experimental results reported in the
relevant literature.
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The results of Strange and Bryant (1979) are plotted in Fig. 6. The graph of flexural
tensile strength against the beam width shows a very regular linear decrease in the bi-
logarithmic diagram for all the four cement composites investigated. The results of Sabnis
and Mirza (1979) show the same trend for the flexural tensile strength (Fig. 7) and for the
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Fig. 6. Eifect of size on flexural tensile strength of cementitious materials.

indirect tensile strength (Fig. 8).
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4. UNIAXIAL TENSILE LOADING OF SLABS AND STRAIN LOCALIZATION

Let us consider an elastic-softening material with a double constitutive law : (a) tension
o vs dilatation € (b) tension ¢ vs crack opening displacement w, after reaching the ultimate
tensile strength o, or strain ¢, = ¢,/ E (Fig. 9):

o= Ex, for e < ¢, (37a)
w i

o= n',,(l - - ) for w < w, (37b)
w,

o =0, for w > w.. (37¢)

According 1o cyn (37¢), the cohesive interaction between the crack surfaces vanishes for
distances lurger than the critical opening w,.

If a plane slab is increasingly loaded, the deformation history will undergo three
different stages.

(1) The slab behaves elastically without damage or fracture zones (Fig. 10(a)). The
displacement of the upper edge is

0=—=1I for c<e, (38)

(2) After reaching the ultimate tensile strength o, a fracture cohesive zone develops in
the weakest section of the slab. Observe that, as the stress field is homogeneous, another

STRESS, ¢
STRESS, o

STRAIN, € OPENING, w

{a) )]

Fig. 9. (a) Stress -strain elastic law ; (b) stress vs crack opening displacement cohesive law.
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Fig. 10. Three different stages of the deformation history : (a) no damage; (b) strain localization ;
(c) separation.

cause of inhomogeneity must be assumed for strain-localization. The slab behaves elas-
tically only outside the fracture zone (Fig. 10(b)). The displaccment of the upper edge is

a
J = ‘[»_»I+-w, for ww., 39)
Recalling eqn (37b), eqn (39) gives:

S = %H—w‘.(l - }) for w<w,. (40)

u

While the fracture zone opens, the elastic zone shrinks at progressively decreasing stresses.
At this stage, the loading process may be stable only if it is displacement-controlled, i.c.
if the external displacement ¢ is imposed. But this is only a necessary and not a sufficient
condition for stability.

(3) When 6 > w,, the reacting stress ¢ vanishes, the cohesive forces disappear and the

slab is completely separated into two pieces (Fig. 10(c)).

Rearranging eqn (38) gives:

. for d<el 41

~i Cn

while the condition of complete separation (stage 3) becomes:
o=0, for d=w. 42)

When w, > €./, the softening process is stable only if displacement-controlled, since
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Fig. 11. Stress-displacement response: (a) normal softening; (b) and (¢) catastrophic softening
{snap back).

the slope da/do at stage (2) is negative (Fig. [1(a)). When w, = &/, the slope do/dd is
infinite, and a drop in the loading capucity occurs, even if the loading is displacement-
controlled (Fig. 11(b)). Eventually, when w, < ¢,/, the slope da/dé becomes positive (Fig.
11(c)) and the same negative jump occurs, like that shown in Fig. 11(b).

Rearranging eqn (40) gives:

P (1‘ w‘.) 4
= w40 E . (43)

The conditions just obtained from a geometrical point of view (Fig. 11) may be obtained
also from the analytical derivation of eqn (43).
Normal softening occurs for dd/de < 0

[ w,
(-5)en

whereas catastrophic softening (or snap-back) occurs for dd/de 2 0:

SAS 25/4-F
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t-2)> :
E“O’u = V. (43)

Equation (45) may be rearranged in the following form:

(w./2b) 1
el N3 (46)

where 4 is the slab width.
The ratio (w./2b) is a dimensionless number. which is a function of material properties
and structural size scale (Carpinteri. 1985) :

w., %
Sg = 2—[7 = a:[; 47)
%y = Yo,w, being the fracture energy of the material (Fig. 9). The energy brittleness number

s¢ describes the scale effects of fracture mechanics, i.e. the ductile-brittle transition when
the size-scale is increased. Equation (46) may be presented in the following final form::

(48)

with 4, the slenderness, equal to /b,

When the size-scale and slab slenderness are relatively liarge and the fracture energy
relatively low, the gobal structural behaviour is brittle. Not the independent values of
paramelers sy, £, and 4, but only their combination 8 = s,/e,4 is responsible for the global
brittleness or ductility of the structure considered.

When B < 1/2, the plane rectangular slab of Fig. 10 shows a mechanical behaviour
which can be defined as britde or catastrophic. A bifurcation or snap-back of the global
equilibrium occurs since, if point U in Fig. 11(c¢) is reached and then the imposed external
displacement J is decreased by a very small amount dd, the global unloading may occur
along two alternative paths—the elastic path UO or the virtual softening path UC.

5. THREE POINT BENDING OF BEAMS AND CURVATURE LOCALIZATION

The lincar-elastic behaviour of a three point bending initially uncracked beam may be
represented by the following dimensionless equation :

=~ 4,

where the dimensionless load and central deflection are respectively given by :

~ !

P= Tl (50)
+ ol

o= Eu‘,;-f. (51)

with / = beam span, b = beam depth and ¢ = beam thickness.
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Fig. 12. Limit-situation of concrete fracture with cohesive forces.

Once the ultimate tensile strength a,, is achicved at the lower beam edge. a fracturing
process in the central cross-section is presumed to start. Such a process admits a limit-
situation like that in Fig. 12, The limit stage of the fracturing and deformation process may
be considered as that of two rigid parts connected by the hinge 4 in the upper beam edge.
The equilibrium of each part is ensured by the external load, the support reaction and the
closing cohesive forces. The latter depend on the distance between the two interacting
surfaces: with increasing distance w, the cohesive forces decrease until they vanish for
w2 W,

The geometrical similarity of the triangles ABC und AB'C’ in Fig. 12 makes

5 _ w2 (52)

where x is the extension of the triangular distribution of cohesive forces. Equation (52) can
be rearranged as:

w.! (53)
=5

Rotational equilibrium about point A is possible for each beam part only if their
respective moments of support reaction and cohesive forces arc equal :

Pl o,xtx
337733 9
Recalling eqn (53), the relation between load and deflection may be obtained :
g tiw? 1

EIRN -

Equation (55) can be put into dimensionless form:
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R RN
P = K (Z(;) . (56)

While the linear equation (49) describes the elastic behaviour of the beam when initially
uncracked, the hyperbolic equation (56) represents the asymptotic behaviour of the same
beam when totally cracked. Equation (49) is valid only for load values lower than that
producing the ultimate tensile strength o, at the lower beam edge:

-

P<i (57)

On the other hand. eqn (56) is valid only for deflection values higher than that producing
a cohesive zone of extension x equal to the beam depth b:

x < b (58)
From eqns (53) and (58). it follows that
. Spht
> ?it:" ’ (59)

The bounds (57) and (59). upper for load and lower for deflection respectively, can be
transformed into two cquivalent bounds, upper for both deflection and load. Equations
(49) and (57) imply that

y< -, (60)

whereas eqns (56) and (59) imply that
P<i. (61

Conditions (57) and (61) are coincident. Therefore, a stability criterion for elastic-
softening beams may be obtained by comparing eqns (59) and (60). When the two domains
are separated, it is rcasonable to presume that the two P-d branches—linear and hyper-
bolic—are connected by a regular curve (Fig. 13(a)). On the other hand, when the two

Pe 5, <& } P2 5. > 6
autb2 a“tb2

5Ue b? M/e“b2

{a) {b)

Fig. 13. Load-deflection diagrams: (a) ductile condition; (b) brittlc condition. &, = 1'6;
Sy = 5ca%02,.
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|

8<1/2 B<1/3
(a) (b}

Fig. 14. Bounds to relative brittleness for (a) uniaxial tension and (b) three point bending geometry.
B = sg/e A

domains are partially overlapping. it is well-founded to suppose them to be connected by
a curve with highly negative or even positive slope (Fig. 13(b)).
Unstable behaviour and catastrophic events (snap-back) are then expected for

sght
2%

-ty

A

l"
I (62)

and the brittleness condition for the three point bending geometry becomes :

Sg
l:,,_l < 3 63)

Even in this case, the system is brittle for low brittleness numbers s, high ultimate strains
£, and large slendernesses 4. Observe that the same dimensionless number B = s,/¢,4
appears also in eqn (48), where the upper bound for brittlencess is equal to 1/2.

Itis therefore cvident that the relative brittlencess for a structure is dependent on loading
condition and external constraints, in addition to the material properties, size-scale and
slenderness. For instance, uniaxial tension is more unstable than three point bending (Fig.
14).

6. APPARENT DECREASE IN THE ULTIMATE BENDING STRENGTH OF INITIALLY
UNCRACKED MATERIALS

The cohesive cruck model is based on the following assumptions (Hillerborg et al.,
1976 ; Carpinteri, 1985 ; Carpinteri and Fanelli, [987):

(1) The cohesive fracture zone (plastic or process zone) begins to develop when the
maximum principal stress achicves the ultimate tensile strength o, (Fig. 9(a)).

(2) The material in the process zone is partially damaged but still able to transfer stress.
Such a stress is dependent on the crack opening displacement w (Fig. 9(b)).

The real crack tip is defined as the point where the distance between the crack surfaces
is equal to the critical value of crack opening displacement w, and where the normal stress
vanishes (Fig. 15(a)). On the other hand, the fictitious crack tip is defined as the point
where the normal stress attains the maximum value g, and the crack opening vanishes (Fig.
15(a)).

The closing stresses acting on the crack surfaces (Fig. 15(a)) can be replaced by nodal
forces (Fig. 15(b)). The intensity of these forces depends on the opening of the fictitious
crack, w, according to the g-w constitutive law of the material (Fig. 9(b)). When the tensile
strength o, is achieved at the fictitious crack tip (Fig. 15(b)), the top node is opened and a
cohesive force starts acting across the crack, while the fictitious crack tip moves to the next
nodc.

With reference to the three point bending test (TPBT) geometry in Fig. 16, the nodes
are distributed along the potential fracture line. The coefficients of influence in terms of
node openings and deflection are computed by a finite element analysis where the fictitious
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Fig. 15. Stress distribution across the cohesive zone (a) and equivilent nodal forces in the finite
element mesh (b).

structure in Fig. 16 is subjected to (n+ 1) different loading conditions. Consider the TPBT
in Fig. 17(a) with the initial crack of length a, whose tip is at node k. The crack opening
displacements at the # fracture nodes may be expressed as follows :

w=KF4+CP+T, (64)
where w s the vector of the crack opening displacements, K the matrix of the coeflicients
of influence (nodal forces), F the vector of the nodal forces, C the vector of the cocllicients
of influence (external load), P the external load and [ is the vector of the crack opening
displacements due to the specimen weight.

On the other hand, the initial crack is stress-free, and therefore
F,=0, for i=12....(k—1). (65a)
while at the ligament there is no displacement discontinuity
w, =0, for i=k(k+1),...,n (65b)
Equations (64) and (65) constitute a lincar algebraic system of 2n equations in 2n

unknowns —the elements of vectors w and F. I load P and vector F are known, it is possible
to compute the beam deflection, 0

P
L1
10 ¥ f node n
node i b
F, Fi
node 1
V2227 boo 20
- 2=4b o

Fig. 16. Finite clement nodes along the potential fracture line.
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Fig. 17, Cohesive crack configurations at the first (1) and (/=& + 1)th (b) crack growth increment.

§=C'F+D,P+D,, » (66)

where D, is the deflection for £ = 1 and D, is the deflection due to the specimen weight.
After the first step. a cohesive zone forms in front of the real crack tip (Fig. 17(b)),
say between nodes j and £ Then eqns (65) are replaced by

F,=0, fori=1,2,...,(j-1), (67a)
F,=Fu(|—:~:}>, for i = j, G+ D)..... 1, (67b)
w, =0, fori=L{+1).....n (67¢)

where F, is the ultimate strength nodal force (Fig. 15(b)):
F, = ba,/m. (68)

Equations (64) and (67) constitute a lincar algebraic system of (2n+ 1) equations and
(2n+ 1) unknowns —the elements of vectors w and F and the external load P. At the first
step, the cohesive zone is missing (! = = k) and the load P, producing the ultimate
strength nodal force F, at the initial crack tip (nodc k) is computed. Such a value Py,
together with the related deflection 8, computed through eqn (66), gives the first point of
the P-J curve. At the second step, the cohesive zone is between the nodes k& and (k+1),
and the load P, producing the force F, at the sccond fictitious crack tip (node k+1) is
computed. Equation (66) then provides the deflection 3,. At the third step, the fictitious
crack tip is at the node (k+2). and so on. The present numerical program simulates a
loading process where the controlling parameter is the fictitious crack depth. On the other
hand, real (or stress-free) crack depth, external load and deflection are obtained at each
step after an iterative procedure.
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Fig. 18, Dimensionless load -deflection diagrams with various brittleness numbers s, = %,/a.h
(A=4d,ao/b =005, =08Tx10 *).

The program stops with the untying of the node n and, consequently, with the deter-
mination of the last couple of values F, and 4,. In this way, the complete load -deflection
curve is automatically plotted by the computer.

Some dimensionless load-deflection diagrams for a concrete-like material are plotted
in Fig. 18, with ay/h =0.0, ¢, =087x 10 *, v=0.1, t = b and / = 4b, and with various
values of the non-dimensional number 5. The specimen behaviour is brittle (snap-back)
for low s, numbers —i.c. for low fracture toughnesses %, high tensile strengths g, and/or
large sizes b. For s, € 10.45x 1073, the P-§ curve has a positive slope in the softening
branch, and a catastrophic event occurs if the loading process is deflection-controlled. Such
anindenting branch is not virtual only if the loading process is controlled by a monotonically
increasing function of time—for example, the displucement discontinuity across the crack
(Fairhurst et al., 1971 ; Rokugo et al., 1986 ; Biolzi er al., in press). On the other hand, egn
(63) gives s; < 11.60 x 10 "*. Such a condition reproduces that shown in Fig. 18 very
accurately. When the post-peak behaviour is kept under control up to complete structure
separation, the arca delimited by the load—deflection curve and the deflection axis represents
the product of the fracture toughness 4, and the initial cross-sectional arca be.

The maximum loading capacity P&, of initially uncracked specimens with [ = 4b is
obtained from Fig. 18. On the other hand, the maximum load P{Y, of the ultimate strength
is given by

o, th*
T

[ ) I—
Pmux -

(69)

Wi td

The values of the ratio PLL,/PL), may also be regarded as the ratio of the apparent tensile
strength o, (given by the maximum load P, and by applying eqn (69)) to the true tensile
strength o, (considered as a material constant). It is evident from Fig. 19 that the results
of the cohesive crack model tend to those of the ultimate strength analysis for low s, values:

lim P, = P (70)

Sy~ 0 fmax

Therefore, for comparatively large specimen sizes only, the tensile strength o, can be
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Fig. 19. Decrease in apparent strength by increasing the specimen size (A =4, a,/b = 0.0,
e, =087x10"1.

obtained as g, = a,. With the usual laboratory specimens, an apparent strength higher than
the true onc is always found (Petersson, 1981),

As a limiting case, for the size b — 0 or fracture cnergy %, — o (clastic-perfectly
plastic material in tension), i.c. for s, — oo, the apparent strength o, — 3a,. In fact, in the
center of the beam, the uniform stress distribution (Fig. 20) produces a plastic hinge with
a resistant moment M, which is twice the classical moment of the bi-rectangular limit
stress distribution (elastic-perfectly plastic material in tension and compression).

The diagrams in Fig. 21 are related to a higher beam slenderness, 4 = 16, The brittleness
increase by decreasing s, is obtained as previously, but in this case it is easier to achieve

b
Mm.- =(Gubt)u —2—

Mg =M, .72

S

Fig. 20. Constant distribution of cohesive stresses.
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Fig. 21. Dimensionless load deflection diagrams with various brittleness numbers s, = 9 /a,b
(4 =10, ay'd = 0.0, 5, = 0.87x 10 ),

the snap-back instability of the beam when s, € 62.70 x 10 3. On the other hand eqn (63)

implics that s, < 46.40 x 10 *, which is a good approximation.

7. CONCLUSIONS

Two different models have been considered :
(1) the ideal material with a random distribution of microdefects (Section 3)
(2) the initially uncracked material with a growing cohesive crack (Section 6).

Both such models lead to a decrease in the apparent strength with an increase in the size of
the specimen.

In the former idealization, the apparent strength (stress of microcracking initiation)
tends to zero when the size tends to infinity, while it tends to the true value o, (constant
material property) when the size tends to zero (Fig. 2(a)).

On the other hand, with the latter model, the apparent ultimate bending strength tends
to the truc value o, when the size tends to infinity, whercas it tends to the limit 3o, when
the size tends to zero (Figs 19 and 20).

The two models may describe different real situations, according to the geometry and
failure mechanism of the specimen. If the microdefects pre-existing in the material produce
very severe stress conditions and the failure mechanism is tensile and brittle, the former
modecl is likely to be applicable. On the other hand, if the failure mechanism is stable or
ductile and is produced by the slow propagation of a unique crack in a partially compressed
material (in bending), the latter model is more suitable for interpreting the ultimate strength
decrease with size.
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