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Abstract-The influence of the shape and size distribution of defects on material strength is
investigated. Constant reference is made to Weibult Theory and Fracture Mechanics. and a family
of regular polygonal voids is considered with the two limit-cases of Griffith cracks and circular
pores. A defect size distribution of proportionality is defined. for which the maltimum defect size
turns out to be proportional to the linear size of the body. In this way. a very general analytical
eltpression for the tensilt' strt'ngth decrease with size is obtained and then confirmed by eltperimental
evidence.

Specimen size is also shown ttl have a fumlamental influence on global structural behaviour.
which can range from ductile to brittle when strain softening and strain localization are taken into
..ccounl. The brittle beh..viour coincides with .. snap-b..ck instability in the Ill..d-deflection path.
which ShllWS .. p<lsitive Sillpe in the softening branch. Such ;t virtu..1 branch m..y be reve;tled only
if the Illading pwcess is cl'ntrolled by a mllnotonically incre..sing function of time (e.g. the cmck
opening displ'll;ement). Otherwise. the loading cap..city will prescnt a discontinuity with a negative
jump.

A gener.. leltpl;lIIation of the wdl·km'wn dt."Crease in ht·ndillg .•/r('//glh by im:reasing the s(l\."Cimen
sizes is given in terms tll'tlimension.tl ..n..lysis. Due to the tlilferent physical dimensions of strength
IFL':) nntl toughness [Ft 'I. the true v..lue tIl' such materi..1property m..y be found exactly only
with comparatively hlrge specimens.

I. INTRODUCTION

It is a matter of t~tct th.tt the strength of structural m.llerials is not constant-it decreases
with incre.tsing size of the specimen. Such .1 phenomenon was an'llyzed by Weibull (1939)
nearly fifty years ago through the application of the "weakest link concept". It consists in
the hypothesis that the probability of finding a critical imperfection in a given material
increases with incre.tsing volume. This is a simple assumption which does not describe either
the nature of the imperlt:ctions or the constitutive law of the material. More recently.
Freudenth.tl (1968) and layatilaka (1979) considered a linear-elastic material with a great
number ofembedded Griffith cracks. They proved that the variability oftensile strength with
specimen volume may be connected with the probability density of crack size distribution.

Several materials used in civil engineering, for example concrete, rocks and fiber­
reinforced cement composites. present softening in their ultimate behaviour under loading
(Bazant, 1976). The size-scale of the specimen has often revealed a fundamental influence
on the global structural behaviour. Whereas in elasticity and plasticity. geometrically similar
structures behave in the same way, when strain-softening and stmin-Iocalization are taken
into account, the structural behaviour ranges from ductile to brittle merely by increasing the
size, and keeping material properties and geometrical shape unchanged. In classical
plasticity, only energy dissipation per unit volume is allowed. whereas, if energy dissipation
per unit area is also contemplated, the glob'll brittleness becomes scale-dependent.

The influence of the shape and size distributions of the defects on the tensile strength
is investigated in Sections 2 and 3 respectively. A family of regular polygonal voids is
considered with the two limit-cases of Griffith cracks and circular pores. A general expla­
nation is thus obtained for the tensile strength decrease with size (from the true value down
to zero) and then confirmed by experimental evidence.

Limit analyses for slabs in tension and beams in flexure are proposed in Sections 4 and
5 respectively. assuming cohesive forces between the two opposite crack surfaces. Such a
simple approach shows a clear trend towards brittle behaviour for large size. When the
softening load-deflection branch presents positive slope. a snap-back instability occurs
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(Maier. 1968). If the loading process is displacement-controlled. the loading capacity will
present a discontinuity with a negative jump. Such results are confinned by a more refined
finite element investigation in Section 6. The hending strength appears to decrease with size
from three times the true value down to the true value for infinite size. A cohesive crack
model is utilized to analyze slow crack growth in bending. Such a model was introduced
by Barenblatt (1959). and then applied with some modifications by several authors: Dugdale
(1960). Bilby et at. (1963). Rice (1968). Hillerborg et at. (1976) and others.

Tensile strength and bending strength both turn out to be decreasing functions of size.
On the other hand. such functions appear different and produced by substantially different
causes.

1. STRUCTURES WITH A DOMINA:'IlT DEFECT

Let us consider a two-dimensional linear-elastic structure with an edge Griffith crack
(Fig. I(a». Referring to the well-known paper by Irwin (1957). the symmetrical stress field
around the crack tip can be described by the following expression:
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Fig. I. Geometrically similar structures with a dominant defect: (a) opening crack: (h) mixed mode
crack: (c) re-entrant corner; (d) polygonal void.
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(I)

where K is the amplification factor of the stress-singularity (stress-intensity factor) and r
and:} are the radial and angular coordinates respectively.

For every geometrical shape of the structure. it is possible to express the K-factor by

K = ubI ~ f(a/b). (2)

where u is the nominal stress. b is a characteristic size of the structure and f is a shape­
factor depending on the geometry ofstructure and on the ratio ofcrack length a to reference
size b (Sih. 1973).

The stress of failure uf is reached when the K-factor is equal to its critical value Kc :

If the logarithms of both sides of eqn (3) arc considered. we obtain:

In (1/ = [In "", -lnf(a/h)] -! In h.

or. more concisely.

(3)

(4)

o

ultimate strength

2na,=2na
u__ ..1 _

crack propagation
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(bl

Fig. 2. Oi·logarithmic strength vs size graph: (a) interaction between ultimate strength collapse and
crack propagation; (h) allcnuation of the strength decrease when the re-entrant corner angle

increases.
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(5)

where function A depends on the shape of structure. as well as on material and crack depth.
If we keep the material and the structural shape constant and take into consideration

a set of geometrically similar structures (Fig. I (a». the strength In Iif will turn out to be a
linearly decreasing function. with slope - 1/2. of the scale-parameter In b (Fig. 2(a».

If the material presents an intrinsic strength Ii., the horizontal line

In uf = In Ii. (6)

will limit the strength for b --- 0'" in Fig. 2(a). In fact. as already observed by Walsh (1972)
and Carpinteri (1982a. b). when the structural size is relatively small, the ultimate strength
failure precedes the crack propagation.

When the Griffith crack is subjected to a mixed mode loading (Fig. I (b», the stress
field at the crack tip is

.
Ii'l = L Ky,-liZS;/(i),

,,~ I

(7)

where Ky (~. = 1.2) arc the stress-intensity factors related to mode I (opening) .lnd mode
2 (sliding) respectively. Analogously to eqn (2), they can be expressed as

Ky = lih,zJ,(a/h); v = 1,2. (8)

The interaction of the two fundamental fracture modes produces crack propagation when
a function of Ky (v = 1.2) is equal to its critical value (Carpinteri. Di Tommaso and Viola,
1(79) :

F(Ky ; ~. = 1.2) = constant. (9)

Most relevant fracture criteria can be approximated by an elliptic function F (Di Leonardo.
1979) :

Kf+qKi=KJ, (10)

where '! ~ 0 is a measure of the influence of mode 2 on crack propagation. Substituting
eqn (8) into eqn (10), it follows that

(II)

and, therefore. the 1~lilure stress may be expressed by eqn (3) again, with functionfreplaced
by the square root:

f=Jfi+qf~. ( 12)

Thus. even in the case of a mixed mode Griffith crack. the scale effect is represented by a
straight line with slope -1/2 in the plane In lif-In h (Fig. 2(a». This means that it is the
power of the stress-singularity-and not the geometry ofcrack. structure and load-which
defines the rate of strength decrease by increasing the size-scale.

Let us consider now a two-dimensionallinear-e1astic structure with a re-entrant corner
of amplitude y (Fig. I (c». Williams (1952) proved that when both the notch surfaces are
free. the symmetrical stress field at the notch tip is
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Fig. 3. Stress-singularity power vs re-entrant comer angle.
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( 13)

where the power tX of the stress-singularity ranges between 1/2 (when}' =0) and 0 (when
., = x), as shown in Fig. 3. If Buckingham's Theorem for physical similarity and scale
modelling is applied, and stress and linear size are assumed as fundamental quantities
(Carpinteri, 1982a), it will be possible to write an equation analogous to eqn (2):

K· = (fh'g(ll/h). (14)

When angle}' vanishes, eqn (14) coincides with eqn (2), whereas when}' = x, the stress­
singularity disappears and the stress-intensity factor K· assumes the physical dimensions
of a stress and bt:comes proportional to the nominal stress (f. As experimentally demon­
strated by Leicester (1973), the failure stress (f/ is achieved when the K··faetor is equal to
its critical value K: :

or, in logarithmic form,

where

In (f/ = B(K.~. a/b) - a. In b,

B(K:,a/h) = In K: -In 9 (a/h).

( 15)

( 16)

( 17)

If we keep material and structural shape constant and take into consideration a set of
similar structures (Fig. I (c», the strength In (f/ turns out to be a linearly decreasing function
with slope -IX of the scale-parameter In b (Fig. 2(b». When}' -+ x, Le. when a. -+ O. any
scale effect vanishes and the straight line becomes horizontal. In this case the equilibrium
condition is:

(18)

and then, from eqn (14),
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g(ub) =
u

1-­
h

( 19)

When the notch depth uh tends to zero. the shape-function g(a/b) = I and the stress­
intensity factor K* coincides with the nominal stress (J exactly-see eqn (14). The distinction
between ultimate strength collapse and fracture at the comer vanishes and condition (16)
coincides with condition (6).

The case of a re-entrant corner subjected to mixed mode loading can be handled in
the same way as the Griffith crack. Even in this case. the conclusion is that only the power
of the stress-singularity. and not the loading condition. determines the rate of decrease in
strength with size.

Let us now consider a two-dimensional linear-elastic structure with a polygonal void
of regular shape and arbitrary number of sides M (Fig. I(d». As is well known. the angle
}' is a function of the number of sides M:

(20)

Every re-entrant corner of the polygonal void is generally subjected to a mixed mode loading
condition with a stress-singularity r .'. For a given external load. there is a corner tip which
is subjectcd to the most severe stress field. If the load is increased proportionally. the
fr,lcture condition will first be achieved at this tip. On the basis of what has been said
previously ,Ioout mixed mode cracks and notches. the strength varies according to elin (16)
even in this case. ,lIId the intercept is

( a) .'.
/J K:. h = In K: -In J.CJT + '/.CIi. (21 )

with obvious meanings of the symbols. A graph of In a I versus In h is therefore linear with
slope - 0(. even in the c,lse of polygonal void. For M = 2 we h,lve a Grillith crack. eqn (20)
giving}' = O. whereas for 1\1 .... CfJ the polygonal void becomes a circular hole. eqn (20)
giving}' = 11:. In the latter case. any size dl"ect vanishes ,lOd the In a/-In b graph appears
horizontal. On the other hand. it is well known that the stress-concentration factor is
independent of the size of the circular hole and that its v.llue is 3.

J INFLUENCE OF DEFECTS AND POROSITY ON MICROCRACKING INITIATION AND
TENSILE STRENGTH

In the present section. two-dimensional structures with a multitude of cracks or voids
of a given size-distribution arc considered. Threc hypotheses are assumed:

(I) the structure is macroscopically homogencous;
(2) the structure is macroscopically isotropic;
(3) the interaction among the imperfections is negligible.

As a first case. Ict us consider a set of similar structures. where a multitude of cracks
,lOd/or polygonal voids ofconstant size a are embedded (Fig. 4(a». They can be considered
as specimens of the same material. and their failure occurs when the fracture condition at
the imperfection of the most critical orientation is realized. Since such imperfections are all
the samc size. we can assert that any size effect is absent in this ideal case.

Let us consider now a set of similar structures. where the imperfections have a constant
size which is proportional to the size of the structure (Fig. 4(b». In this case. they cannot
be considered ,IS specimens of the same material. The failure occurs at the imperfection of
the most criticul orientation. which is of a size proportional to the size of the structure.
Since the influence of the other imperfections is assumed negligible. this case is completely



DccrC'olSC of strength with specimen size-two e:ltplanations 413

t a

,/
./ \\ ,

1,/ I -
" -.::::-, \

a1

./ \ -
I- ./

~a

t

\
/ ,/

t
, ,/

I \

a i = constant

t

" ­./ ...... I "

...... -..... \

...... ~ I I

+
alb; = constant

t
.... ...
, ... "

..... ;-,'
... - ,\

1

(b)

t

" '"... ./', ~ \ "

t

(al)max fbi =constant
b2

t
,," ...

(c)

Fig. 4. Ge:ume:lril:ally similar strul:tun:s with many randum dcli:l:ts: (a) I:unslant dcli:l:t size:;
(b) dcli:d sizc I:unslant and propurtiunal tu thc strul:tural siLc; (1:) dcli:l:t sizc distribution of
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equivalent to that of a unique imperfection of size proportional to that of the structure.
Thus, the strength size etfect is represented by a linear In l11-ln b diagram with slope - a,
where a is the power of the stress-singularity produced by the imperfections. If we have
imperfections of the same size. but with ditferent shape (e.g. cracks and circular pores). the
fracture condition has to be evaluated only for the imperfections with the maximum value
ofa (0 ~ a ~ 1/2).

Let us consider finally a set of similar structures where the imperfections with the most
dangerous shape (a = am•.) have a probability density p(a) of size distribution (Figs. 4(c)
and 5(a». We can assert that if the size distribution p(a) is such that the maximum size am••
is proportional to the line.tr scale b. then the strength size effect will be represented by a
linear In l1(-In b diagrum with slope - amu•• The above hypothesis is very restrictive and is
valid only when the probability density of size distribution p(a) presents particular proper­
ties. If p is the density of imperfections (number of imperfections per unit area). the
maximum size am.. can be defined as follows:

(22)

where the factor (I 121t) is due to the fact that all the imperfection orientation angles ware
equally likely. If a geometrically similar structure ofcharacteristic size kh is considered and
the above hypothesis is assumed (Fig. 4(c». we can write
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Fig. 5. Defect size distribution of proportionillity: (a) probability density; (b) cumulative dis­
tribution.

(23)

Since Um., is a function of p and b. besides the ranges Au and Aw. it follows that eqns (22)
and (23) must be valid for any defect size a:

(24)

(25)

From eqns (24) and (25) it follows that

pea) = k 2p(ka). Va» ii. Vke R+. (26)

and then function p assumes the form

C
pea) = -i. Va» ii.

a
(27)

where C is a constant with the physical dimension of a length and ii is the average defect
size. Equation (27) will be referred to as the defect size distribution of proportionality. The
related cumulative distribution function Pis

fa faa 1" CPea) = p(x) dx = p(x) dx+ '2 d.t".
o 0 ao X

(28)

where ao » ti is the value beyond which the decreasing branch of function p can be approxi­
mated by eqn (27). Carrying out the integrations in eqn (28). we obtain
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[
CJ" C CP(a)=Po+ -- =Po+---·
x ". aD a

Since for a -+ 00 the cumulative distribution pea) -+ I.

C
P o+-=I,

ao

and then (Fig. 5(b» :

Pea) = 1- (C/a). for a > ao.

with

C = (1- Po)ao.

415

(29)

(30)

(3\ )

(32)

Generally speaking. the cumulative distribution function P will have the following form:

with

C
Pea) = \ - --oj. for a > an.

a'

C = (1- Po)a~.

(33)

(34)

In this case. the strength size effect can be represented by a linear In arln b diagram with
slope -a.N:

(35)

where the exponent' depends on the secondary features of the material (e.g. density of
imperfections. size distributions of the less dangerous defects. etc.). The probability density
of size distribution in the general case-see eqn (33)-is:

dP C
pea) = -- = N - ..-I' for a > ao.da a' +

(36)

which becomes eqn (27) when N = I.
Equation (35) shows that the size effect vanishes when}' = 1C (circular pores) and/or

when N -+ 00 (nearly constant defect size). On the other hand. the size effect becomes
enormous when N -+ 0 (very large dispersion in the imperfection size distribution). The
treatment of 2-D structures can formally be extended to 3-D structures with polyhedral
voids (Carpinteri. 1983).

If the preceding assumptions are valid. the experimental In arln h strength diagram
must appear linear with a negative slope a.,v. according to eqn (35). When the dispersion in
the imperfection size distribution is not very high (N ~ I). we have the theoretical upper
bound a.N ~ 0.50. which is rarely exceeded in the experimental results reported in the
relevant literature.
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The results of Strange and Bryant (1979) arc plotted in Fig. 6. The graph of flexural
tt:nsilt: strength against the beam width shows a very regular linear decrease in the bi­
logarithmic diagram for all the four cement composites investigated. The results of Sabnis
and Mirz;1 (1979) show the same trend for the flexural tensile strength (Fig. 7) and for the
indirect tensile strength (Fig. 8).
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4. UNIAXIAL TENSILE LOADING OF SLABS AND STRAIN LOCALIZATION

417

Let us consider an elastic-softening material with a double constitutive law: (a) tension
u vs dilatation f.; (b) tension u vs crack opening displacement w. after reaching the ullimate
tensile strength u" or strain f.. = u./E (Fig. 9) :

(T = Ef:. for r. ~ f.". (37a)

( II')(T = (T" 1- .. for II' ~ II',. (37h)
U'c'

(T = O. for II' > 11',. (:Hc)

According to elJn (37c). the cohesive interaction helween the crack surfaces vanishes for
distances larger than the critical opening II'"

If a plane slah is increasingly loaded. the deformation history will undergo three
JilTerent stages.

(I) The slab hehaves elastically without Jamage or fracture zones (Fig. lO(a». The
displacement of the upper eJge is

• (1 I'
() = £ I. or 1: ~ LII • (38)

(2) After reaching the ultimate tensile strength all' a fracture cohesive zone develops in
the weakest section of the slab. Observe that. as the stress field is homogeneous. another

o
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Eua '"-----.-'----_
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(al

o
~.

w
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I­
CIl

o
OPENING. W

(b)

Fig. 9. (a) Stress-strain elastic law: (Il) stress vs crack opening displOlcement cohesive (OIW,
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Fig. 10. Three different stages of the deformation history: (a) no damage; (b) strain localization;
(c) separation.

cause of inhomogeneity must be assumed for strain-localization. The slab behaves elas­
tically only outside the fracture zone (Fig, lO(b». The displacement of the upper edge is

• (T
(~ := --I + w for w ~ 11',_,E' ~

Rc\-',tlling cqn (37b). cqn (39) givcs:

(39)

(40)

While the fracture zone opens, the elastic zone shrinks at progressively decreasing stresses.
At this stage. the loading process may be stable only if it is displacement-controlled. i.e.
if the external displacement J is imposed. But this is only a necessary and not a sufficient
condition for stability,

(3) When J > II',. the reacting stress (1 vanishes. the cohesive forces disappear and the
slab is completely separated into two pieces (Fig. 10(c».

Rearranging eqn (38) gives:

while the condition of complete separation (stage 3) becomes:

(1 := O. for J;;?: II',.

(41)

(42)

When II', > f.u/. the softening process is stable only if displacement-controlled. since
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(e)

Fig. II. Stress·-displacement response: (a) normal softening; (b) and (c) catastrophic softening
(snap back).

the slope dlT/dJ at stage (2) is negative (Fig. II(a». When We = tul, the slope dlT/de5 is
infinite, and a drop in the loading capacity occurs, even if the loading is displacement­
controlled (Fig. II (b»..Eventually, when ll'e < tul, the slope dlT/dJ becomes p,ositive (Fig.
II(c» and the same negative jump occurs, like that shown in Fig. II(b).

Rearranging eqn (40) gives:

(43)

The conditions just obtained from a geometrical point of view (Fig. II) may be obtained
also from the analytical derivation of eqn (43).

Normal softening occurs for dJ/dlT < 0 :

( I 11'<) 0--- < ,
E lTu

whereas catastrophic softening (or snap-back) occurs for de5/dlT ~ 0:

SolS 25/4-r

(44)
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(45)

Equation (45) may be rearranged in the following form :

(46)

where b is the slab width.
The ratio (wj2b) is a dimensionless number. which is a function of material properties

and structural size scale (Carpinteri. 1985):

(47)

r; f- = !11.Wr being the fracture energy of the material (Fig. 9). The energy brittleness number
Sf: describes the scale effects of fracture mechanics. i.e. the ductile-brittle transition when
the size-scale is increased. Equation (46) may be presented in the following final form :

(4~)

with ),. the slenderness. equal to I/h.
When the size-scale and sl'lb slenderness arc relatively large .lnd the fracture energy

rd'ltivcly low. the gobal structural behaviour is brittle. Not lhe independent values of
p.lramelers Sf.". 1:. and .t. bUI only their combination IJ = St:l/:). is responsible for the global
brittleness or ductility of the structure considered.

When B ~ 1/2. the plane rectangular slab of Fig. 10 shows a mechanical behaviour
which can be defined as hrilll£' or cawstmphic. A hiji/rcatioll or snap-hack of the global
equilibrium occurs since. if point U in Fig. II (c) is reached and then the imposed external
displacement J is decn.:ased by a very small amount dJ. the global unloading may occur
along two alternative paths-the clastic path UO or the virtual softening path Uc.

S. THREE POINT BENDING OF BEAMS AND CURVATURE LOCALIZATION

The linear-elastic behaviour of a three point bending initially uncracked beam may be
represented by the following dimensionless equation:

_ 4 ...
P = -_oj)

),\

where the dimensionless load and central del1ection arc respectively given by:

- PI
P = --.-,.

(1.th-

... (51
(j = ---,.

c.h-

with I = beam span. b = beam depth and t = beam thickness.

(49)

(50)

(5 ()
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Fig. 11. Limit-situation of concrete fracture with cohcsive forces.

Oncc the ultimate tensile strength (1u is achieved at the lower beam edge. a fracturing
process in the central cross-section is presumed to start. Such a process admits .1 limit­
situation like that in Fig. 12. The limit stage of the fracturing and deform'ltion process may
be considered as that of two rigid parts connected by the hinge A in the upper beam edge.
The equilibrium of each part is ensured by the external load. the support re'letion .lOd the
dosing cohesive forces. The lalter depend on the distance between the two interacting
surfaces: with increasing distance 11', the cohesive forces decrease until they vanish for
II' ~ 11',_.

The geometrical similarity of the triangles ABC and AB'C' in Fig. 12 makes

15 11',./2
~2 = -.~

(52)

where x is the extension of the triangular distribution of cohesive forces. Equation (52) can
be rearranged as:

wJ
x = 415 . (53)

Rotational equilibrium about point A is possible for each beam part only if their
respective moments of support reaction and cohesive forces are equal:

PI Uu.'([ x
2-2=23'

Recalling eqn (53), the relation between load and deflection may be obtained:

Equation (55) can be put into dimensionless form :

(54)

(55L
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(56)

While the linear equation (49) describes the elastic behaviour of the beam when initially
uncracked. the hyperbolic equation (56) represents the asymptotic behaviour of the same
beam when totally cracked. Equation (49) is valid only for load values lower than that
producing the ultimate tensile strength (T. at the lower beam edge:

(57)

On the other hand. eqn (56) is valid only for deflection values higher than that producing
a cohesive zone of extension x equal to the beam depth b:

x:::; b. (58)

From eqns (53) and (58). it follows that

(59)

The bounds (57) and (59). upper for load and lower for del1ection respectively. can be
transformed into two equivalent bounds. upper for both del1ection and load. Equations
(49) and (57) imply that

.\... ....
e) :::; 6 • (60)

whercas cqns (56) and (59) imply th'lt

(61 )

Conditions (57) 'lnd (61) are coincident. Therefore. a stability criterion for elastic­
softening beams m.IY be obtained by comparing eqns (59) and (60). When the two domains
are separated. it is reasonable to presume th'lt the two p-(j br'lnches-linear and hyper­
bolic-are connected by a regular curve (Fig. 13(a». On the other h'lnd. when the two

P2

o tb2
u

c52/t
u

b2
o~_-'-_ _'_ .=.. _

2

3

...-..... ...;' ,2
3

62ft
u

b2
0'-- -''-__-'- _

Fig. 13. Load-denection diagrams: (al ductile condilion; (hl hrillk condition. <>, == A. '/6:
(j~ = SF;' Z/2r.".
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Fig. I·t Bounds to relative brittleness for (a) uniaxial tension and (b) three point bending geometry.
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domains are partially overlapping. it is well-founded to suppose them to be connected by
a curve with highly negative or even positive slope (Fig. 13(b».

Unstable behaviour and catastrophic events (snap-back) are then expected for

(62)

and the brittleness condition for the three point bending geometry becomes:

(63)

Even in this case, the system is brittle for low brittleness numbers St.·, high ultimate strains
c. and large slendernesses ;.. Observe that the same dimensionless number B = se/!:)'.
appears also in eqn (48). where the upper bound for brittleness is equal to 1/2.

It is therefore evident that the relative brittleness for a structure is dependent on loading
condition and external constraints. in addition to the material properties. size-scale and
slenderness. For instance. uniaxial tension is more unstable than three point bending (Fig.
14).

6. APPARENT DECREASE IN THE ULTIMATE BENDING STRENGTII OF INITIALLY
UNCRACKED MATERIALS

The cohesive crack modd is based on the following assumptions (Hillerborg e/ al.•
1976: Carpinteri. 1985: Carpinteri and Fanelli. 1987):

(I) The cohesive fracture zone (plastic or process zone) begins to develop when the
maximum principal stress achieves the ultimate tensile strength (1u (Fig. 9(a».

(2) The material in the process zone is partially damaged but still able to transfer stress.
Such a stress is dependent on the crack opening displacement IV (Fig. 9(b».

The real crack tip is defined as the point where the distance between the crack surfaces
is equal to the critical value of crack opening displacement IV, and where the normal stress
vanishes (Fig. 15(a». On the other hand. the fictitious crack tip is defined as the point
where the normal stress attains the maximum value (1u and the crack opening vanishes (Fig.
15(a».

The closing stresses acting on the crack surfaces (Fig. 15(a» can be replaced by nodal
forces (Fig. 15(b». The intensity of these forces depends on the opening of the fictitious
crack. IV. according to the (1-1V constitutive law of the material (Fig. 9(b». When the tensile
strength (1. is achieved at the fictitious crack tip (Fig. 15(b», the top node is opened and a
cohesive force starts acting across the crack. while the fictitious crack tip moves to the next
node.

With reference to the three point bending test (TPOD geometry in Fig. 16, the nodes
are distributed along the potential fracture line. The coefficients of influence in terms of
node openings and deflection are computed by a finite element analysis where the fictitious
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Fig. 15. Stress distribution al:ross the I:ohesive zone (a) and equivalent nodal forl:es in the finite
element mesh (h).

structure in Fig. 16 is subjected to (n + I) dilTerent loading conditions. Consider the TPBT
in Fig. 17(a) with the initi~,1 crack of length (Ill whosc tip is at node k. The crack opening
displacemcnts at the n fracture nodes may be e:<pressed as follows:

w = KF'+CI'+r, (64)

where w is the vector of the crack opening displacements, K the matrix of the coellicients
of inl1uence (nodal forces), F the vel.:tor of the nod~" forl.:es, C the vector of the l.:Oellkients
of inl1uence (external load), P the external load and r is the vel.:tor of the crack opening
displal.:ements due to the specimen weight.

On the other hand, the initial crack is stress-free, and therefore

l~ =: 0, for i = I. 2, ... , (k - I),

whilt: at the ligament there is no displacement discontinuity:

W, = 0, for i = k, (k+ I), ... ,/I.

(65a)

(65b)

Equations (64) and (65) constitute a linear algebraic system of 211 equations in 2n
unknowns-the elements ofvcctors wand F. Ifload P and vector F are known, it is possible
to compute the beam dcl1ection, 6:

p

1~ tr------------..l.---n-o-de-n---------,

,-

node i

FI---tJ'-- F1
node 1

2 =4b

Fig. 16. Finite clement nodes along the potential fracture line.

b
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(a)

(b)

Fig. 17. Cohcsivc crack CllItligur'llions '1llhc lirsl (;1) '1nd (I-k + I )Ih (h) crack growlh incrcmcnt.

(66)

where Dr is the deflection for P = I :lIld Dy is the dclkction due to the specimen weight.
After the first step. a cohesive zone forms in front of the real crack tip (rig. 17{b»,

say between nodes} and /. Then eqns (65) :Ire replaced by

Wi = O.

fori= 1,2, ... ,(j-1),

for i=}.U+I) ..... /,

for i = /, (l+ I)..... n.

(67a)

(67b)

(67c)

where F. is the ultimate strength nodal force (Fig. 15{b»:

F. = ba.lm. (68)

Equations (64) and (67) constitute a linear algebraic system of (21/+ I) equations and
(2n + I) unknowns -the elements of vectors wand F and the external load P. At the first
step. the cohesive zone is missing {l =} = k) and the load PI producing the ultimate
strength nodal force F. at the initial crack tip (node k) is computed. Such a value PI'
together with the related deflection ~ I computed through eqn (66), gives the first point of
the P-~ curve. At the second step, the cohesive zone is between the nodes k and (k+ I).
and the load Pz producing the force F. at the second fictitious crack tip (node k+ I) is
computed. Equation (66) then provides the deflection ~z. At the third step. the fictitious
crack tip is at the node (k + 2). and so on. The present numerical program simulates a
loading process where the controlling parameter is the fictitious crack depth. On the other
hand. real (or stress-free) crack depth. external load and deflection are obtained at each
stcp aftcr an iterative proccdure.
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(,i. .~ 4. a..lh = n.o. ". = O.l(7)( to .).

The program stops with the untying of the node" and. consequently, with the deter­
mination of the last couple of values F. and (j•. In this way, the complete lo'lddetlection
curve is automatically plotted by the computer.

Some dimensionless 10ad-del1ection diagrams for a concrete-like material are plotted
in Fig. 18, with au/h = 0.0. c. = 0.87 x 10 4. V = 0.1, I = h and 1= 4h. and with various
values of the non-dimensional number S,,;. The specimen behaviour is brittle (snap-back)
for low St: numbers -i.e. for low fracture toughnesses '!it" high tensile strengths (1. and/or
large sizes h. For St: ~ 10.45 x 10 -~. the p-(j curve has a positive slope in the softening
branch, and a catastrophic event occurs if the loading process is detlection-controlled. Such
an indenting branch is not virtual only if the loading process is controlled by a monotonically
increasing function of time-for example, the displacement discontinuity across the crack
(Fairhurst et al., 1971 ; Rokugo el al.• 1986; Biolzi et aI., in press). On the other hand. eqn
(63) gives St: ~ 11.60 x 10 s. Such a condition reproduces that shown in Fig. 18 very
accurately. When the post-peak behaviour is kept under control up to complete structure
separation, the area delimited by the load-dellection curve and the deflection axis represents
the product of the fracture toughness f§ t' and the initial cross-sectional area ht.

The maximum loading capacity p~J. of initially uncracked specimens with 1= 4h is
obtained from Fig. 18. On the other hand, the maximum load p~J, of the ultimate str.ength
is given by:

(69)

The values of the ratio p~~./p~~. may also be regarded as the ratio of the apparent tensile
strength (1/ (given by the maximum load p~J. and by applying cqn (69» to the true tensile
strength (1. (considered as a material constant). [t is evident from Fig. 19 that the results
of the cohesive crack model tend to those of the ultimate strength analysis for low Sf: values:

lim P~l:' = p~~•.
",.:-0

(70)

Therefore. for comparatively large specimen sizes only. the tensile strength (1" can be
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Fig. 19. Dt.'\:reasc: in apparent strength by increasing the spt.'Cimen size (A = 4. (/.Jh = 0.0.
r.. = 0.87 x 10- 4

).

obtained as (1. = (1f' With the usual laboratory specimens. an apparent strength higher than
the true one is always found (Petersson. 1981).

As a limiting case. for the size b - 0 or fracture energy '1J F - 00 (clastic-perfectly
plastic material in tcnsion). i.e. for s,.; -. 00, the apparent strength af - 3a•. In fact. in the
center of the beam. the uniform stress distribution (Fig. 20) produces a plastic hinge with
a resistant moment Mm.. which is twice the classical moment of the bi-rectangular limit
stress distribution (clastic-perfectly plastic material in tension and compression).

The diagrams in Fig. 21 arc related to a higher beam slenderness. A. = 16. The brittleness
increase by decreasing s,.; is obtained as previously. but in this case it is easier to achieve

b
M = (0 bt). -

m.. u 2

Fig. 20. Constant distribution of cohesive stresses.
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the snap-back instability of the beam when s" ~ 62.70 x 10. 5
. On the other hand cqn (63)

implies that Sf: ~ 46.40 x 10 '. which is a good approximation.

7. CONCLUSIONS

Two ditlcrent models have been considered:

(I) the ideal material with a random distribution of microddi:cts (Section 3);

(2) the initially uncracked material with a growing cohesive crack (Section 6).

Both such models lead to a decrease in the apparetll strength with an increase in the size of
the specimen.

In the former idealization. the apparent strength (stress of microcracking initiation)
tends to zero when the size tends to infinity, while it tends to the true value (1u (constant
m~lterial property) when the size tends to zero (Fig. 2(a)).

On the other hand. with the latter model. the apparent ultimate bending strength tends
to the true value (1u when the size tends to infinity. whereas it tends to the limit 3(1u when
the size tends to zero (Figs 19 and 20).

The two models may describe different real situations. according to the geometry and
failure mechanism of the specimen. If the microddccts pre-existing in the material produce
very severe stress conditions and the failure mechanism is tensile and brittle. the former
model is likely to be applicable. On the other hand. if the failure mechanism is stable or
ductile and is produced by the slow propagation ofa unique crack in a partially compressed
material (in bending). the latter model is more suitable for interpreting the ultimate strength
decrease with size.
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